CCZ and EA equivalence between mappings over finite Abelian groups

نویسندگان

  • Alexander Pott
  • Yue Zhou
چکیده

CCZand EA-equivalence, which are originally defined for vectorial Boolean functions, are extended to mappings between finite abelian groups G and H. We obtain an extension theorem for CCZequivalent but not EA-equivalent mappings. Recent results in [1] are improved and generalized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships Between CCZ and EA Equivalence Classes and Corresponding Code Invariants

The purpose of this paper is to provide a brief survey of CCZ and EA equivalence for functions f : G → N where G and N are finite and N is abelian, and, for the case f : Zp → Zp , to investigate two codes derived from f , inspired by these equivalences. In particular we show the dimension of the kernel of each code determines a new invariant of the corresponding equivalence class. We present co...

متن کامل

EA and CCZ Equivalence of Functions over GF(2n)

EA-equivalence classes and the more general CCZ-equivalence classes of functions over GF (2) each preserve APN and AB properties desirable for S-box functions. We show that they can be related to subsets c[T ] and g[T ] of equivalence classes [T ] of transversals, respectively, thus clarifying their relationship and providing a new approach to their study. We derive a formula which characterise...

متن کامل

On CCZ-equivalence and its use in secondary constructions of bent functions

We prove that, for bent vectorial functions, CCZ-equivalence coincides with EA-equivalence. However, we show that CCZ-equivalence can be used for constructing bent functions which are new up to CCZequivalence. Using this approach we construct classes of nonquadratic bent Boolean and bent vectorial functions.

متن کامل

CCZ-equivalence and Boolean functions

We study further CCZ-equivalence of (n,m)-functions. We prove that for Boolean functions (that is, for m = 1), CCZ-equivalence coincides with EA-equivalence. On the contrary, we show that for (n,m)functions, CCZ-equivalence is strictly more general than EAequivalence when n ≥ 5 and m is greater or equal to the smallest positive divisor of n different from 1. Our result on Boolean functions allo...

متن کامل

On Isotopisms of Commutative presemifields and CCZ-Equivalence of Functions

A function F from Fpn to itself is planar if for any a ∈F ∗ pn the function F (x+ a)−F (x) is a permutation. CCZ-equivalence is the most general known equivalence relation of functions preserving planar property. This paper considers two possible extensions of CCZ-equivalence for functions over fields of odd characteristics, one proposed by Coulter and Henderson and the other by Budaghyan and C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2013